

XCM motion controller

User manual

WUXI XINJE ELECTRIC CO., LTD.

Data No. PC02 20140818 3.0

	Catalog
XCM	Foreword
Motion control type PLC	XCM motion controller
User manual	summarize
	The power circuit specifications,
	external wiring
	Action and function of various
	register, motion control instruction
	Appendix

This manual includes some basic precautions which you should follow to keep you safe and protect the products. These precautions are underlined with warning triangles in the manual. About other manuals that we do not mention please follow basic electric operating rules.

Precautions

Please follow the precautions. If not, it may lead the control system incorrect or abnormal, even cause fortune lose.

Correct Application The models could only be used according to the manual, and an only be used along with the peripheral equipments recognized or recommended by Xinje Electronic. They could only work normally in the condition of be transported, kept and installed correctly, also please operate and maintain them according to the recommendation.

WUXI XINJE ELECTRIC CO., LTD. Copyright reserved

Without exact paper file allowance, copy, translate or using the manual is not allowed. Disobey this, people should take the responsibility of loss. We reserve all the right of expansions and their design patent.

Duty Declare

We have checked the manual, its content fits the hardware and software of the products. As mistakes are unavoidable, we couldn't promise all correct. However, we would check the data in the manual frequently, and in the next edition, we will correct the necessary information. Your recommendation would be highly appreciated

CATALOG

FOREV	VORD	6
1. XC	M MOTION CONTROLLER SUMMARIZE	7
1-1.	INTERNAL SPECIFICATION	21
1-2.	APPEARANCE & DIMENSION	22
1-3.	TERMINAL ARRANGEMENT	23
1-4.	COM PORT DEFINITION	24
2. PC	OWER SPECIFICATION, I/O SPECIFICATION, EXTERNAL LAYOUT	25
2-1.	POWER SPECIFICATION	26
2-2.	AC POWER SUPPLY, DC INPUT	27
2-3.	INPUT SPECIFICATION	28
2-4.	DC INPUT SIGNAL OPERATION (AC POWER)	29
2-5.	TRANSISTOR OUTPUT CIRCUIT AND SPECIFICATIONS	31
3.	MOTION CONTROL INSTRUCTION, PARAMETER, SPECIAL DATA REGISTER AN	D
AUXIL	JARY RELAY	35
3-1.	SOFT ELEMENT ID LIST	36
3-2.	MOTION CONTROL INSTRUCTION LIST (SPECIAL FOR XCM SERIES)	38
3-3.	HOW TO READ THE INSTRUCTIONS	39
3-4.	OUTPUT TERMINAL ARRANGEMENT TABLE	40
3-5.	MOTION CONTROL INSTRUCTIONS	41
3-6.	MOTION CONTROL PARAMETER	59
3-7.	SPECIAL DATA REGISTER LIST	63
3-8.	SPECIAL AUXILIARY RELAY LIST	64
3-9.	PULSE OUTPUT SIGN BIT	65
3-9.	Application	70
4. API	PENDIX	78
4-1.	BASIC ORDER CONTROL INSTRUCTION LIST	79
4-2.	APPLICATION INSTRUCTION LIST	81
4-3.	SPECIAL FUNCTION INSTRUCTION LIST	84
4-4.	HIGH SPEED COUNTER ASSIGNMENT	85
4-5.	EXTERNAL INPUT INTERRUPTION ASSIGNMENT	87
4-6.	FREQUENCY MEASUREMENT.	88

Foreword

---- Features of XCM motion controller

XCM motion controller features:

> The PLC integrate motion control function and ordinary PLC function in one

XCM motion controller not only supports proprietary function, but also majority functions of ordinary PLC, including high speed pulse, high speed count, interruption, PID control, etc.

Support at most 10-axis pulse output function

XCM series contains 3/4/10-axis pulse output, meet users control demands.

> Predominant motion control capability

It can make 2-axis linkage motion, support basic motion control instructions such as circular, linear interpolation, etc.

Plane transformation

Support PLAN instruction, can transform among plane X-Y, Y-Z, X-Z etc.

> Can expand XC series digital, analog module and BD board

Similar to XC series, XCM series also support module and BD board expansion, including digital I/O, temperature control and analog module, etc.

> Tracking control function

XCM-32T-E-3PLS has tracking control function, which is suitable for continuous processing. It can realize fixed-length and fixed-scale working.

XCM serials including models:

- XCM-24/32T3-E: 3-axis pulse output, transistor output.
- ➤ XCM-24/32T4-E: 4-axis pulse output, transistor output.
- > XCM-60T-E: 10-axis pulse output.

Supplement explanation:

The instruction noted in this manual is motion control function instructions, other instructions such as sequence control, application or special function instructions, please refer to **XC series PLC user manual.**

Notes:

- (1) XCM-60T-E can expand BD board, but cannot expand modules.
- (2) XCM-60T-E cannot support motion control instructions.

1. XCM motion controller summarize

The chapter focus on XCM series product general specifications, appearance and dimension, terminal arrangement and the definition of each communication pin.

1-1. Internal specification

1-2. Appearance and dimension

1-3. Terminal arrangement

1-4. The pin definition of communication port

1-1. Internal specification

			Туј	pe				
	А	C power supply]	DC power supply		Input point	Output point
		Transistor	-	-	Transistor	-	(DC24V)	(R, T)
	-	output			output			
м	-	ХСМ-24Т4-Е	-	-	XCM-24T4-C	-	14	10
N D	-	ХСМ-24Т3-Е	-	-	ХСМ-24Т3-С	-	14	10
P N	-	ХСМ-32Т4-Е	-	-	XCM-32T4-C	-	18	14
IN	-	ХСМ-32Т3-Е	-	-	ХСМ-32Т3-С	-	18	14
	-	ХСМ-60Т-Е	-	-	XCM-60T-C	-	36	24
D	-	XCM-24PT4-E	-	-	XCM-24PT4-C	-	14	10
P N	-	ХСМ-24РТ3-Е	-	-	XCM-24PT3-C	-	14	10
N D	-	XCM-32PT4-E	-	-	XCM-32PT4-C	-	18	14
ľ	-	ХСМ-32РТ3-Е	-	-	ХСМ-32РТ3-С	-	18	14
	-	XCM-60PT-E	-	-	XCM-60PT-C	-	36	24

General specification

Items	Specifications
Insulate voltage	Above DC 500V 2MΩ
Anti-noise	1000V 1uS pulse 1 minute
Ambient	0~60°C
temperature	
Ambient humidity	5%~95%
COM 1	RS-232, connect with host machine, HMI program or debug
COM 2	RS-232/RS-485, connect with network or aptitude
	instrument, inverters etc.
COM 3	BD board COM port RS-232C/RS-485
Installation	Can use M3 screw to fix or install directly on DIN46277
	(Width 35mm) rail
Ground	The third type of ground (can't ground with strong power
	system.)

T			Specification								
It	em	24 points	32 points	60 points							
Program exe	ecuting format	Loop scan f	ormat, timing scan	format							
Program	m format	Instruction,	, C language, ladder	- chart							
Dispos	se speed	0.3µs									
Power cu	it retentive	Use Flas	shROM and Li batte	ery							
User progra	am's capacity		128KB								
I/O	points	Input 14 points	Input 18 points	Input 36 points							
		Output 10 points	Output 14 points	Output 24 points							
Interior coi	l's points (M)		8768 points								
	Points	640 points									
Timer		100mS timer: Set time 0.1~3276.7 seconds									
(T)	Spec.	10mS timer: Set time 0.01~327.67 seconds									
		1mS timer: Set time 0.001~32.767 seconds									
	Points		640 points								
Counter	Spaa	16 bits cour	nter: set value K0~	32767							
(C)	spec.	32 bits counter: set value K0~2147483647									
Data Reg	ister (D)		5024 words								
FlashROM Re	egister (FD)		1981 words								
Secret Registe	r (FS)		16 words								
Expansion	internal		26964 words								
Register(ED)			30804 Wolds								
High spe	ed dispose	High speed count, pulse output, external interrupt									
Setting of ti	me scan space	0~99ms									
Password	protection	6 bits ASCII									
Self diagn	ose function	Power on self-diagnos	e, Monitor timer, gr	ammar checking							

XCM performance & specification table:

Note: the "user program capacity 128KB" should choose password download mode.

1-2. Appearance & dimension

XCM series 24/32-point main units

XCM series 60-point main units

1-3. Terminal arrangement

XCM series 60-point main units: 36 Input /24 Output

XCM series 24T4 main units: 14 Input /10 Output

											1									
/	N		•	CO	М	X1	X	3	X5		Χ7	X1	1	X13	X	15	•		٠	
L	_	FG	CC	DM	XO		X2	X	4	Х6	X	10	X1	2 X	14	•	•	•	•	
	0V		Α	CON	10	Y1	Y:	2	CON	12	Y5	Y	6	Y10		•	•	•	•	
24	1V	•	E	3	Y0		COM1	Y3	3	Y4	C	OM3	Y	7 Y	11)			

XCM series 24T3 main units: 14 Input /10 Output

	N		•		CC	M	X1		Х3		X5	X	7	X1	1)	(13	X	15	•	•	•	
L		F(G	CC	M	X)	X2		X4	X	6	X1	0	X12	X	14	•	•		•	
	0	/	A		CO	MO	CO	M1	Y2		Y3	Y	5	Yć	5 1	(10	(•		•	•	

XCM series 32T4 main units: 18 Input /14 Output

1	1	٠	CO	MX	(1 X	3	X5	X	7	X11	X13	X	15	X17	X21	
Ĺ	F)	G (COM	X0	X2	χz	1	Х6	X1	0)	(12	X14	X16	X2	0	
 											_					
0	V	A	CON	10 Y	'1 Y	2	COM2	Y	5	Y6	Y10	CO	M4	Y13	Y15	
24V	•)	B	Y0	COM1	Y3	3	Y4	CO	M3	Y7	Y11	Y12	Y1	4	

XCM series 32T3 main units: 18 Input /14 Output

	Ν		•	C	MC	X1	1	Х3		Χ5		Χ7		X11		(13	X	15	X17	X	21
L		FG	C	OM	X)	X2		X4		Х6		X10		X12	X1	14	X1	6	X20	
	0V		Α	C0	MO	CC	DM1	Y2		Y3		Y5		Y6	Y	'10	C0	M4	Y13	Y1	15
24V		٠		B	Y)	Y1	(COM2		Y4		COM3		Y7	Y1	11	Y1	2	Y14	

1-4. COM Port definition

Program cable

Connection of programmable cable as the following:

Mini Din 8core socket (pin)

2. Power specification, I/O specification, external layout

This chapter focus on the power composing, internal signal circuit composing, output circuit composing and external layout method.

2-1. Power specification

2-2. AC power supply, DC input type

2-3. Input specification

2-4. DC input signal disposal (AC power supply)

2-5. Transistor output circuit and specifications

2-1. Power specification

For the power specification of XCM motion controller basic units, please see the following table:

AC power type

Rated voltage	AC100V~240V
Voltage allowable range	AC90V~265V
Rated frequency	50/60Hz
Allowable momentary	Interrupt time $\leq 0.5 \text{ AC}$ cycle, alternation $\geq 1 \text{ s}$
power-cut time	
Impact current	Max 40A 5mS below/AC100V
	max 60A 5mS below /AC200V
Max power consumption	12W
Power for sensor	24VDC±10% max 400mA

- To avoid voltage decrease, please use the power cable above $2mm^2$
- Even power off within 10ms, PLC still can work. But if power off for long time or abnormal power voltage decreasing, PLC will stop working, output will be in OFF status, when the power on again, the PLC will auto-run.
- Connect the ground terminals of basic units and expansion modules together. and then ground.

DC power type

Rated voltage	DC24V
Voltage allowable range	DC21.6V~26.4V
Input current	120mA DC24V
(Only for basic unit)	
Allowable momentary	10mS DC24V
power-cut time	
Impact current	10A DC26.4V
Max power consumption	12W
Power for sensor	24VDC±10% Max 400mA

2-2. AC power supply, DC input

- The power is connected between L and N terminals.
- 24+, COM terminals can be used as 400mA/DC24V power for sensor. Besides, this terminal can't be given power from outside.
- _____ Terminal is vacant terminal, please do not connect it or use it as relay terminal.
- Please connect the COM terminals of basic unit and expansion unit.

2-3. Input specification

Model	XCM-32T/XCM-60T				
Input signal voltage	DC24V±10%				
Input signal current	7mA/DC24V				
Input ON current	Above 4.5mA				
Input OFF current	Below 1.5mA				
Input response time	About 10ms				
Input signal format	Contactor input or NPN				
	open collector transistor				
Circuit insulation	Optical-coupled insulation				
Input action display	LED lights when input ON				

Expansions

Model	XCM-32T/XCM-48T				
Input signal voltage	DC24V±10%				
Input signal current	7mA/DC24V				
Input ON current	Above 4.5mA				
Input OFF current	Below 1.5mA				
Input response time	About 10ms				
Input signal's format	Contactor input or NPN				
	open collector transistor				
Circuit insulation	Optical-coupled insulation				
Input action display	LED lights when input				
	ON.				

2-4. DC Input Signal Operation (AC Power)

DC input signal

Input terminal

When connect input terminal and COM terminal with no-voltage contactor or NPN open collector transistor, if input is ON, LED lamp lights. There are many COM terminals in the PLC.

Input circuit

Use optical coupler to insulate the input primary circuit and secondary circuit, There's a C-R filter in the secondary circuit. It is set to avoid wrong operation caused by vibration of input contactor or noise along with input signal. As the preceding reason, for the changing of input $ON \rightarrow OFF$, $OFF \rightarrow ON$, in the PLC, the response time delays about 10ms. There is built-in digital filter for input terminals.

Input sensitivity

XCM input current is 7mA, in order to get reliable action, the ON current is above 3.5mA, the OFF current is below 1.5mA.

Exterior circuit for the sensors The input current of XCM is supplied by inside 24V power. If use external power to drive sensor or optical-electricity switch, the voltage should be DC 24V±4V, please use NPN open collector transistor for sensor output.

Input Connection

2-5. Transistor output circuit and specifications

The output terminals of XCM are all transistor type which can be divided into high-speed pulse output and normal transistor output.

High-speed pulse output

Model	XCM-24/32T4	XCM-24/32T3	XCM-60T			
High-speed pulse output terminal	Y0~Y3	Y0~Y11				
External power supply	Below DC5~30V					
Action display	LED					
Max current	50mA					
Max output frequency of the pulse	200KHz					

Notes:

- (1) For XCM-32T-E-3PLS, Y0 and X7 (high speed counter input) cannot use at the same time.
- (2) Y1 cannot work with expansion BD board at the same time.

Normal transistor output

Model		XCM-24/32T4 XCM-24/32T3 XCM-60T					
Transistor ou	ıtput terminal	Y4~Y15	Y3~Y15	Y12~Y23			
External pov	ver supply		Below DC5~30V				
Circuit insul	ation	Op	tical-coupling insula	ation			
Action display			LED				
Maximum	Resistance load	0.5A					
load	Induce load		8W/DC24V				
	Lamp load		1.5W/DC24V				
Minimum lo	ad	DC5V 2mA					
Response	OFF→ON	Below 0.2ms					
time	ON→OFF		Below 0.2ms				

Normal transistor output circuit

- Output terminal
 The transistor output of basic unit has 1~4 common output.
- External power supply Please use DC5~30V power supply to drive the load.
- Circuit insulation
 Use the photo-electricity-coupling to insulate the PLC internal circuit and output transistor.
 Beside, each public block is separated.
- Action display When driving the optical-coupling, LED lights, output transistor is ON.
- Response time From photo-electricity coupling device driving (or cut) to transistor ON (or OFF), the time is below 0.2ms.
- Output current

The current is 0.3A per point. But as restrict of temperature rising, the current is 0.5A every four points.

• Open circuit current Below 0.1mA.

To avoid burning output unit and the PLC PCB board, please choose suitable fuse.

(Note: For XCM-60T-E, when connect the optical coupling output to the load, please use output terminal Y12~Y23).

Connect with servo driver

The following is the wiring diagram of T type PLC and servo driver.

(If external power supply is DC5V, there is no need to connect $2K\Omega$ resistance.)

3. Motion control instruction, parameter, special data register and auxiliary relay

The chapter introduces XCM motion control instruction function, motion control parameter, special data register and auxiliary relay. In the end of the chapter, we select two examples for reference.

3-1. Soft element ID list

3-2. Motion control instruction list

3-3. Instruction explanation reading method

3-4. Output terminal arrangement table

3-5. Motion control instruction explanation

3-6. Motion control parameter list

3-7. Special data register list

3-8. Special auxiliary relay list

3-9. Application case

3-1. Soft element ID list

XCM series soft element ID is as follows.

Besides, when connect input, output expansion device and special expansion device with basic units, for the input/output relay NO., please see user manual.

Maula	Nama			Points						
Mark	Name	24 points	32 poi	ints	60 points	24	36	60		
Х	Input point	X000~X021 (C	ictal)	X000	~X043 (Octal)	10	18	36		
Y	Output point	Y000~Y015 (0	Octal)	Y000	~Y027 (Octal)	14	14	24		
м	Internal relay	M0~N	л2999 Г МЗ	000~M7	999】		8000			
IVI		Spe	cial use M8	000~M8	767		768			
S	Flow		\$0~83 \$\$512~8	511 1023 】			1024			
		T0~T99: 100ms	not accumul	ation						
		T100~T199: 100	ms accumul	ation						
		T200~T299: 10m	is not accum	nulation		640				
Т	Timer	T300~T399: 10m	is accumulat	tion						
	T400~T499: 1ms not accumulation						_			
			-							
		T600~T639: 1ms	T600~T639: 1ms with interruption, precise timing							
		C0~C299: 16 bits	C0~C299: 16 bits positive/negative counter							
C	Counter	C300~C599: 321	oits positive/	/negative	counter	640				
		C600~C639: high	n speed cour	nter						
			D0~D2	2999		4000				
D	Data register		D4000~I	D4999						
		Sp	ecial use D8	000~D90)23		1024			
ED	FlashROM		FD0~FD1519				1520			
гD	register	Special use FD8000~FD8349, FD8890~FD8999					460			
ED	Expansion internal			36864						
	register									
FS	Secret register		DS0~F	S15			16			

X. User program capility is the max capility in passward download mode

The area in [] is the defaulted power failure retentive area. The retentive area of D, M,S, T, C can be changed. For the details, please see the following table.

X. Flash ROM register does not have to set power failure retentive area; its data won't lose when power is off (No battery).

X. The address of input coil, output relay are octal data, other No. are all decimal data.

X. The I/O which does not connect to external device can be used as internal relay.

X/Y is input and output signal terminals

*Special use register is occupied by system, can not use in other place

Xonly hardware version above V3.0 basic units have ED registers

 $\ref{solution}$ Software version V3.3K and above add FS registers , FS registers oppupied some FD registers , so in softwaree , the number of FD registers will decrese

Soft element power-off retentive area settings:

Name	Area	Function	System default value	Power-off retentive range
D	FD8202	Start denotation of D power-off retentive area	4000	D4000~D4999
М	FD8203	Start denotation of M power-off retentive area	3000	M3000~M7999
Т	FD8204	Start denotation of T power-off retentive area	620	Not set
С	FD8205	Start denotation of C power-off retentive area	320	C320~C635
S	FD8206	Start denotation of S power-off retentive area	512	S512~S1023
ED	FD8207	Start denotation of ED power-off retentive area	0	ED0~ED36863

DRV	High speed positioning
LIN	Linear Interpolation Positioning
CW	Circular clockwise interpolation
CCW	Circular anticlockwise interpolation
DRVZ	Back to machine zero
СНК	Servo checking end
DRVR	Back to electrical zero
SETR	Electrical zero setting
TIM	Delay instruction
ABS	Absolute address
INC	Incremental address
SETP	Set coordinate system
PLAN	Plane selection
FOLLOW	Following instruction

3-2. Motion control instruction list (Special for XCM series)

Notes: (1)XCM-60Tcannot support motion control instructions.

(2)All motion control instructions pulse frequency can not less than 200 HZ

3-3. How to read the instructions

Notes:

- 1. Instruction name
- 2. 16 bits instruction and 32 bits instruction
- 3. Ladder chart illustration
- 4. Applicable models
- It denotes that the operand doesn't change with the instruction, called source operand.

It denotes that the operand changes with the instruction, called target operand.

5. Successively explain the instruction's basic movement, use method, application example, expansion function, notice point, etc.

3-4. Output terminal arrangement table

There are rules for XCM output terminal function and related operation axis:

XCM-24/32T4

Output	Y0	Y1	Y2	Y3	Y4	Y5	Y6	Y7
Function	Pulse output				Direction output			
Operation axis	K0	K1	K2	K3	K0	K1	K2	K3
Axis	Х	Y	Z	U	Х	Y	Z	U

XCM-24/32T3

Output	Y0	Y1	Y2	Y3	Y4	Y5	
Function	Р	ulse outp	ut	Direction output			
Operation axis	K0	K1	K2	K0	K1	K2	
Axis	X	Y	Z	X	Y	Z	

XCC-24/32

Output	Y0	Y1	Y2	Y3	Y4	Y5	Y6	Y7	Y10	Y11
Function	Pulse output				Direction output					
Operation axis	K0	K1	K2	K3	K4	K0	K1	K2	K3	K4
Axis	1	2	3	4	5	1	2	3	4	5

ХСМ-60Т-Е

Output	Y0	Y1	Y2	Y3	Y4	Y5	Y6	Y7	
Function		Pulse output							
Axis	1	2	3	4	5	6	7	8	

Output	Y10	Y11		
Function	Pulse output			
Axis	9 10			

Note:(1)XCM-60T-E pulse & directioon terminals can be used as any output terminal of Y12~Y27

(2) XCM-60T-E $\,$ 6 channels in behind pulse output not support PTO $\,$ PTOA $\,$ PSTOP $\,$ PTFand high precision ZRN instructions

3-5. Motion Control Instructions

PLAN: select plane or space	
<u>16-bit instruction</u> :	<u>32-bit instruction</u> : see the description below

Function & Action

Function: select axis X and Y for operation which is XY plane. It defines the operation axis of all the following motion instructions.

(SI): define the first operation axis; the following instructions will recognize this axis as the first operation axis.

(S2): define the second operation axis; the following instructions will recognize this axis as the second operation axis.

Notes: If do not use PLAN to define the plane, X and Y axis are default operation axis. Operation plane is X, Y.

Example

Instructions: LD M0 PLAN K1 K2 SETP K10000 K20000 When M0 ON, select K1 and K2 as operation axis, which is Y, Z plane.

SETP can set coordinate system instruction. Change the current position register value to 10000 and 20000 for K1 and K2 axis.

SETP: set coordinate system

<u>16-bit instruction</u>: -- <u>32-bit instruction</u>: see the description below

Function & action

Function: set the coordinate, define the plane by PLAN instruction (such as the up diagram, the new coordinate is K1000, K100).

- (S1) Set the new coordinate of the first operation axis
- (S2) Set the new coordinate of the second operation axis

Notes: The new coordinate will instead of the old one when this instruction is executed. Besides, the value in machine zero and electric zero registers have not changed, so in fact the position of the machine zero and electric zero have changed.

Example

Such as the following diagram, in the original coordinate system, the current register value is (200, 200), machine zero register value is (50, 50), electric zero register value is (150, 100); after implementation of the instruction SETP K100 K100, the reference frame has changed, but the register value has not changed, at last the position has changed.

Such as: current value is (200, 200) (absolute coordinates), after implementation of the instruction SETP K100 K100, the zero has changed as the following:

ABS: absolute address		Suitable type:
		ACM-24/32
<u>16-bit instruction</u> :	<u>32-bit instruction</u> :	XCC-24/32

Function & action			
	ABS]	

• After executing ABS instruction, coordinates (X, Y) will be recognized as the absolute value of zero (0, 0).

- The displacement value of arc center (I, J) and radius (r) will be recognized as incremental value.
- If the address isn't defined, it will be recognized as absolute value.

Notes: ABS is corresponding to INC, once the ABS instruction is executed; it will be effective until the INC instruction is executed.

After ABS instruction, the LIN instruction will do linear interpolation according to the absolute coordinates.

INC: incremental address		Suitable type
<u>16-bit instruction:</u>	<u>32-bit instruction:</u>	XCC-24/32 XCC-24/32

- After the implementation of INC instruction, address (X, Y) will be recognized as incremental value of the current position.
- INC instruction is similar to ABS, once INC is executed, it will be effective until ABS is executed.

Instruction list :

LD M0 PLAN K0 K1 INC LIN K200 K0

After executing INC instruction, LIN instruction will do linear interpolation according to the incremental address relatives to the current position.

In the up diagram, same coordinates produce different results by using ABS and INC instructions.

SETR: set electric zero		Suitable type:
<u>16-bit instruction</u> :	<u>32-bit instruction</u> :	XCM-24/32 XCC-24/32

Function & action

• The current position will be stored into the electric zero register, the original zero will be replaced.

Example

After executing SETR instruction, the current coordinates (100, 250) will be stored into electric zero register. For actual applications, this instruction can simplify the coordinate system.

DRVR: electric return to zero		Suitable type:
		ACIVI-24/32
<u>16-bit instruction</u> :	<u>32-bit instruction</u> :	XCC-24/32

Function & action

- The machine will return to the electric zero at high-speed and do servo end checking.
- The acceleration time is up to FD8910, deceleration time is up to FD8912, operation speed is up to FD8908.

In actual applications, DRVR makes the coordinate system clear and simplifies the operation, decreases the error.

A\s following figure show: if machine cuurent coodinate is (300, 300) in X-Y plane, set electronic zero coordinate is (100, 100); when excute DRVR instruction, X axis and Y axis will return from (300, 300) to (100, 100) in high speed

DRVZ: return to machine zero	Suitable type:	
		XCIVI-24/32
<u>16-bit instruction</u> :	<u>32-bit instruction</u> :	XCC-24/32

Function & action

First, we will introduce the machine zero.

- There are two modes 1 and 2. Parameter 26 can set the mode (which is return to machine zero parameter). The bit 4 to 7 defines whether to use close-point switch. Besides, the bit 8 to 11, 12 to 15 is also related to close-point switch.
- (2) The other parameters related to machine zero include: (the details please refer to the appendix)

Parameter 16, 17, 18, 19: set the machine zero of axis X, Y, Z, U.

Parameter 20: the speed (frequency) of return to machine zero.

Parameter 21: crawling speed of return to machine zero.

Parameter 22, 23: corresponding to axis X, Y, zero (phase Z) pulse value whose crawling speed needs count.

About mode 1 and 2:

Mode1: The bit 4 to 7 of parameter 26 is 0, means do not use close-point switch.

Mode2: The bit 4 to 7 of parameter 26 is 1, means use close-point switch.

The bit 4 to 7 of parameter 26 is corresponding to the close-point switch of axis X, Y, Z and U, if setting value is 0, do not use close-point switch is mode 1; setting value is 1, use close-point switch is mode 2

The X-axis and Y-axis support mode 1 and 2. The Z-axis and U-axis support mode1 only. The input terminals of the switch setting:

Operastion axis		X	Y	Z	U
Close-point	XCM	X12	X13		
switch input	XCC	X10	X11		
Z-phase	XCM	X10	X11		
zero input	XCC	X16	X17		

Mode 1: there is no close-point switch setting. The machine decides the target position coordinates according to the parameter 16 to 19 when returning to the machine zero, and decides the direction of return to machine zero according to bit 0 to 3 of parameter 26, return speed depends on parameter 20.

Mode 2: there is close-point switch setting. During the machine is returning to the machine zero, when the machine arrives the close-point switch, the speed will decrease from the value of

parameter 20 (setting speed) to parameter 21 (crawling speed). The machine will stop according to the counting zero (Z-phase) pulse signal of parameter 22 and 23. Please see the following diagram:

Function: the machine will return to machine zero at the highest speed.

- PLC will select which axis to return according to the current plane, it will also decide whether to return to the machine zero according to the value of M8261~M8264 (sign bit of return to machine zero forbidden).
- M8265~M8268 (returning to zero sign bit of axis X, Y, Z) will be ON after returning to the zero.
- Two axes will return to machine zero at the same time. If need one return after another, set ON sign bit of return to machine zero forbidden.
- Please refer to chapter 3-5 and 3-7 for sign bits and parameters.

Program example

Return to the zero of axis-X, and then return to the zero of Y-axis.

forbid the Y-axis to return to zero
the X-axis returns to machine zero
permit the Y-axis to return to zero
forbid the X-axis to return to zero
the Y-axis returns to machine zero
permit the X-axis to return to zero

Notes: If M8261 and M8262 are all ON, DRVZ will not be executed.

Example 2

If machine X-axis and Y-axis back to machine zero at same time in X-Y plane, request: X axis and Y axis machine zero are 0, speed of back to machine zero is 1000Hz, crawl speed back to machine zero is 200Hz, Xaxis and Y axis back to machine zero Z-phase pulse is 6, direction back o machine zero is position direction, X axis and Y axis all use close-point switch, close-point switches status are normally open, X axis and Y axis all rising edge, only need to set following parameters:

Register	Set value	Word		Explanation
FD8922	0	Double	Denary	X axis machine zero
FD8924	0	Double	Denary	Y axis machine zero
FD8930	1000	Double	Denary	Speed back to machine zero
FD8932	200	Double	Denary	Crawl speed back to macine zero
FD8934	6	Single	Denary	Z-phase pulse number of X axis back to machine zero
FD8935	6	Single	Denary	Z-phase pulse number of Y axis back to machine zero
FD8938	11110000	Single	Binary	Back to machine zero setting

Instruction list : LD M0 PLAN K0 K1 DRVZ

Note:

- When excuting machine zero the value of register D8482/D8484/D8486/D8488and D8170/D8173/D8176/D8179 will not change ;
- (2) The pulse acceleration/deceleration time cn set via registers FD8910 (unit: ms) and FD8912 (unit: ms)

k1000

k100

 X-axis and Y-axis high speed positioning with the maximum speed: X-axis target position; operands: K、TD、CD、D、FD.
 Y-axis target position; operands: K、TD、CD、D、FD.

DRV

- + +

- The instruction specifies the travel to the target coordinates with independent settings for the X and Y-axes. This instruction doesn't realize interpolation function.
- Each axis maximum speed is specified by parameter register FD8908; acceleration/deceleration speed is determined by acceleration time parameter FD8910 and deceleration parameter FD8912.
- Whether the position is incremental (distance from the zero point) or absolute (distance from the zero point) is specified by instruction ABS, INC.
- When the target position, operate speed are specified by indirect registers, the system default them as double words.

Program Example

Instruction list:

LD M0 PLAN K0 K1 ABS DRV K2000 K3000 Select X-Y plane via PLAN K0,K1 ,M0 ON , current coordinate is (1000, 1000) , according Absolute drive way,position in max speed ,target address is (2000, 3000)

LIN: Linear Interpolation Positioning	Suitable Model:	
16bits instruction:	<u>32bits instruction:</u> Below	XCM-24/32 XCC-24/32

Function & Action

Function: The first and second axes do linear interpolated positioning at appointed speed; the plane will be defined by PLAN.

- (S1) First axis target position coordinates. Operand: K, TD, CD, D, FD
- (S2) Second axis target position coordinates. Operand: K, TD, CD, D, FD
- (S3) Third axis target position coordinates. Operand: K, TD, CD, D, FD
 (Notes: three axes motion control is not open, it is not useful to set the parameter here, but these bits must be reserved.)
- (S4) The speed of linear interpolated positioning. Operand: K, TD, CD, D, FD.(The highest speeds can up to 80 kHz for LIN and CW/CCW instructions)

If there is no appointed speed for the first and second axes, the PLC will do linear interpolated positioning at the highest speed.

- S The first axis target position coordinates. Operand: K, TD, CD, D, FD
- D The second axis target position coordinates. Operand: K, TD, CD, D, FD
- This instruction uses two axes to move the machine to target position through beeline
- INC and ABS will define whether the target position is incremental or absolute value
- The default operation is double words when the target position and speed are appointed by registers.

Instruction list:

	Absolute drive method;
LD M0	Select X-Y plane via PLAN K0,K1 ,this instruction
PLAN KO KI	moves the machine from (2000,3000) to the target
ABS	position (1000, 2000) with linear interpolated positioning
LIN K1000 K2000 K0 K2000	at the speed of 2KHz.

CW/CCW: Circular interpolation		Applicable model
		ACM-24/32
<u>16 digit instructions</u>	<u>32 digit instructions</u> : The following	XCC-24/32

Function & Action

M0		S1	<u>S2</u>	S 3	<u>S4</u>	S 5·	S 6
	– CW	k100	k100	k100	k100	k100	k100

Function: run circular interpolation at certain speed according to the center position and target position of first and second axes.

- The coordinate plane will be defined by PLAN.
- CW is clockwise interpolation, CCW is counterclockwise interpolation.

CW

CCW

- (SI) The first axis target position coordinates, operands: K, TD, CD, D, FD.
- (S2) The second axis target position coordinates, operands: K, TD, CD, D, FD.
- (s3) Arc center position coordinates of the first axis, operands: K, TD, CD, D, FD.
- (S4) Arc center position coordinates of the second axis, operands: K, TD, CD, D, FD.
- (S5) The third axis position, operands: K, TD, CD, D, FD.
 (Notes: three axes motion control is not open, so these parameters are not useful but they are reserved.)
- (S6) Circular peripheral speed, operands: K, TD, CD, D, FD.
 (The highest speed can up to 80 kHz for LIN and CW/CCW instructions)

If the peripheral speed is not defined, the system will default to the highest speed:

- The center coordinates of first and second axes will be seemed as incremental address based on starting point.
- Acceleration/deceleration time of the peripheral speed is set individually in FD8910 and FD8912.
- INC and ABS will define whether the target position is incremental or absolute value.
- It is default to double words operation when the target position or speed is defined by registers.
- If the start position and the target position is the same, the trajectory is a full circle.

Program example

Instruction list:

LD M0 PLAN K0 K1 ABS CW K1000 K500 K200 K0 K5000

Define the drive method is absolute address, move along the arc whose center incremental address is (200, 0) at the speed of 5 kHz, start from A(600,500) to B(1000,500). Note:Please confirm the X/Y axis coordinate is (600,500) before excuting

Function: the machine runs servo end checking after finishing the interpolation, then runs another operation. If there is no servo end checking, the machine will run without pause when interpolating, the turning point will become smooth curve.

Please note the following points when using motion control instructions:

- If insert CHK between 2 motion control instructions, the trajectory will pause for a while when gets to appointed point, then continue running the next instruction. Otherwise, the trajectory is a smooth curve.
- (2) When continuous use PLAN, please add CHK before the second PLAN, otherwise the trajectory will deviate.

The coil can be contained in CHK. The coil can stand for the positioning completion signal of the servo driver. The machine will pause when running CHK. The machine will run the next instruction when the coil is ON. If the coil is always ON, the function is the same as CHK without coil. If the coil is always OFF, the machine will stop and never go to the next instruction.

(S1): the coil of CHK, operand: X, Y, M, S, T, C

Example 1

The machine moves from A to B to C. If inserts CHK between LIN, the trajectory is like solid line. If no CHK, the trajectory is like dotted line.

Example 2

The machine moves from A to B to C to D to E to A. Please see the solid line in the following diagram.

In the program, select the XY plane at first. Select absolute drive mode, set the coordinate system to (K0, K0). At this time, select incremental drive mode in order to measure the coordinate system. After completion of the first linear interpolation instruction, run CHK M0 to cause pause which avoid smooth curve. It runs the next LIN instruction when M0 is ON.

Example (3)

When there are many plane conversions in the program, select XY plane and do circular interpolations in incremental mode, then insert CHK, and select YZ plane.

PLAN K0 K1 INC CW K0 K0 K15000 K0 K0 D2 CHK PLAN K1 K2 INC LIN K0 K10000 K0 D2

TIM: Delay	Applicable models	
		XCM-24/32
<u>16-bit instruction</u> :	<u>32-bit instruction</u> : remarks	XCC-24/32

- Unit is 1ms, K1000 means delay 1s.
- The value of delay time is indirect set by data register. Default is double words operation.

Example

As the ladder chart, delay 1s after the completion of linear interpolation, then run the second linear interpolation instruction. Please see the following instructions:

LD X0 PLAN K0 K1 ABS SETP K0 K0 INC LIN K1500 K0 K0 K1000 TIM LIN K0 K2000 K0 K1000

FOLLOW: Following instruction		Applicable models XCM-24/32
<u>16-bit instruction</u> :	<u>32-bit instruction</u> : As follows	XCC-24/32

- (Si) : High-speed counter, it can be AB phase, single phase or direction +pulse
- $(\overline{s_2})$: Operand K10 is multiplicative coefficient, operands: K, TD, CD, D, FD
- $\overline{(s_3)}$: Operand K20 is divided coefficient, operands: K, TD, CD, D, FD
- $\overline{(\mathbf{S}\mathbf{A})}$: Operand Y0 is port No. of pulse output
- (s5) : Operand Y1 is port NO. of pulse direction output

Note: XCPPro V3.1version support operand S2,S3 is constent K, V3.2 or above not support

- Following instruction can output 4 or 1 time of the high-speed counter signal. The output frequency will change as the input frequency, the pulse quantity is calculated by multiply/divide coefficient.
- The meaning of following is: geometric magnify or minify the high-speed counter signal, then add pulse forward or backward via phase checking, finally output the pulse in the mode of pulse+direction.
- The output pulse quantity depends on C630. The pulse quantity is 4 times of 1-time pulse input mode when selecting 4-time pulse input mode.
- This instruction is used to adjust the digital control system. Control the back/forward of the operation table by manual pulse generator. It also can be applied in some cases need precise synchronization.

FOLLOW instruction diagram: (take Y0 as an example)

The relationship between FOLLOW and motion control instructions:

FOLLOW can be used independently without motion instructions. However, it needs to build the relationship between FOLLOW and motion control instructions when need manual pulse generator to adjust coordinates position.

The pulse quantity is stored in register D8500~D8501 when running FOLLOW. At the same time, the pulse variation will be transformed into position variation of corresponding output axis, and reflect in current axis register. So FOLLOW and motion control instructions will constitute a whole unit. FOLLOW can point at X-axis, Y-axis, Z-axis, U-axis.

Make sure the direction of position and encoder is consistent, the direction of FOLLOW and motion control must be consistent. Such as the above example, Y0 outputs the pulse, the direction must output from Y4.

Feed forward compensation coefficient:

XCM has delay from receiving to sending pulse. Modify the feed forward compensation coefficient (FD8950) to decrease the delay. The range is $0\sim100\%$. 0 means no feed forward compensation.

Following fine tuning pulse quantity

If the following runs for long time, it may produce the pulse accumulated error which causes the motor pulse to lead or lag. Modify D8502 can adjust the error of next pulse period. If the motor leads, set D8502 to negative, if the motor lags, set it to positive.

The value in D8502 is effective in one pulse period; D8502 will be reset after the fine tuning.

3-6. Motion control parameter

The motion control parameter can be set in special FLASH register. Each parameter and corresponding XCM register address is as following:

PARA	Special	Name Description		Default
NU.	register			value
1	FD8892	Pulse rate (X-axis)	Pulse number per	0
	FD8893		revolution	
2	FD8894	Pulse rate (Y-axis)	Pulse number per	0
	FD8895		revolution	
3	FD8896	Pulse rate (Z-axis)	Pulse number per	0
	FD8897		revolution	
4	FD8898	Pulse rate (U-axis)	Pulse number per	0
	FD8899		revolution	
5	FD8900	Motor resolution(X-axis)	Move distance per	0
	FD8901		revolution	
6	FD8902	Motor resolution(Y-axis)	Move distance per	0
0	FD8903		revolution	0
7	FD8904,	Motor resolution (7 axis)	Move distance per	0
1	FD8905	Motor resolution(Z-axis)	revolution	0
Q	FD8906 Motor resolution(IL axis)	Move distance per	0	
ð	FD8907	Motor resolution(0-axis)	revolution	0
0	FD8908	The highest speed	Unit: Hz	0
,	FD8909	The highest speed		0
10	FD8910	Accelerate time	Luit ma	0
10	FD8911	Accelerate time	Unit. Ilis	0
11	FD8912	FD8912	TT '/	0
11	FD8913	Decelerate time	Unit: ms	0
	FD8914			0
12	FD8915	Electrical zero (X-axis)		0
	FD8916			
13	FD8917	Electrical zero (Y-axis)		0
	FD8918			
14	FD8919	Electrical zero (Z-axis)		0
	FD8920			
15	FD8921	Electrical zero (U-axis)		0
	FD8922			
16	FD8923	Machine zero (X-axis)		0
	FD8024			
17	FD8075	Machine zero (Y-axis)		0
	100923		1	

-				
18	FD8926 FD8927	Machine zero (Z-axis)		0
19	FD8928 FD8929	Machine zero (U-axis)		0
20	FD8930 FD8931	The speed of return to machine zero		0
21	FD8932 FD8933	Interruption trigger: return to machine zero at crawling speed	External input X2 (X-axis) External input X10 (Y-axis)	0
22	FD8934	Zero-point (Z phase) pulse number of X-axis crawling speed which need to be count	External input X5 (X-axis)	0
23	FD8935	Zero-point (Z phase) pulse number of Y-axis crawling speed which need to be count	(Y-axis)	0
24	FD8936	-	-	0
25	FD8937	-	-	0
26	FD8938	Return to machine zero settings	See table (3-5-1)	0
27	FD8940	Magnification coefficient	(power series of 2)	
28	FD8950	Feed forward coefficient		0

The following is the detailed explanation of motion control parameters:

PARA.1: Pulse rate

Set the X-axis pulse number per revolution which add to the driver unit Setting range: 1~65535 PLS/REV (pulse/revolution) When the servo motor is equipped with an electronic gear, its magnification should be taken into account. The relationship between the pulse rate and the electronic gear is as follows:

Pulse rate (PARA.1) = Resolution of encoder (positioning feedback pulse)/electronic gear

PARA.2, PARA.3, PARA.4: set the Y-axis, Z-axis, U-axis pulse number per revolution add to the driver unit. The basic settings are the same as PARA.1.

PARA.5: Feed rate

Set the trip of the machine per rotation of the motor Setting range :1~999999 (um/REV, mdeg/REV, 10⁻¹minch/REV)

PARA.6, PAARA.7, PARA.8 set motor per rotation trip of Y-axis, Z-axis, U-axis. The basic

settings are the same as PARA.1.

PARA.9: Maximum speed (default speed)

The machine runs as this speed if there is no appointed speed in positioning program. Other speed must be set equal to or less than this speed. Setting range: 0~200000 Hz

Notes: the highest speed is 80KHz for LIN and CW/CCW instructions.

PARA.10: Acceleration time

Set the time of achieving the maximum speed Setting range: 0~5000ms When PARA.10 is 0, the machine actually accelerates in 1 ms.

PARA.11: Deceleration time

Set the time to stop the machine. Setting range: 0~5000ms When PARA.11 is 0, the machine actually decelerates in 1 ms.

PARA.12: X-axis electric zero address

The absolute address of DRVR instruction Setting range: -999999 to +999999 The address is an absolute value.

PARA.13, PARA.14, PARA.15 set the electric zero absolute address of Y-axis, Z-axis, U-axis. The basic setting is the same as PARA.12.

PARA.16: Machine zero address

After the operation of DRVZ(return to zero), set the current address as the machine configuration. Setting range:-999999 to +999999

PARA.17, PARA.18, PARA.19 set the machine zero address of Y-axis, Z-axis, U-axis. The basic setting is the same as PARA. 16.

PARA20: return to machine zero speed

Set the speed when the machine is returning to the zero point, the set value must be equal to or less than the maximum speed of PARA.9 Setting range:10 to 50000 Hz.

PARA.21: crawling speed returning to the machine zero

The low speed after the near-point DOG signal (external input X2 of X-axis, external input X10 of Y-axis) is turn on. Setting range: 10 to 50000 Hz

PARA.22: zero point (Z phase) pulse number of crawling speed which needs to be count

After near-point DOG signal is triggered, the external input X5 of X-axis and external input X11 of Y-axis receive the encoder zero-point signal. If this signal is equal to the appointed zero point pulse number, the machine will stop.

Setting range: 0 to 2147483647

PARA.23: zero point (Z phase) pulse number of Y-axis crawling speed which needs to be count. The basic setting is the same as PARA.22.

PARA.24, PARA.25: invalid parameters

PARA.26: returning to machine zero (FD8938)

(0~3 bit) the direction returning to the machine zero

(4~7 bit) Whether to use proximity switch

If not use proximity switch, then machine zero returning is the same as electrical zero returning, direct decelerate and stop.

(8~11 bit) Proximity switch state

0: normal open 1: normal closed

(12~15 bit) Proximity switch logic

0: rising edge is effective 1: falling edge is effective

0 bit	1 bit	2 bit	3 bit
X-axis machine zero	Y-axis machine zero	Z-axis machine zero	U-axis machine zero
returning direction	returning direction	returning direction	returning direction
(0:positive	(0:positive	(0:positive	(0:positive
1:negative)	1:negative)	1:negative)	1:negative)

4 bit	5 bit	6 bit	7 bit
X-axis whether to	Y-axis whether to	Z-axis whether to	U-axis whether to
use proximity	use proximity	use proximity	use proximity
switch (0: not use 1:			
use)	use)	use)	use)

8 bit	9 bit	10 bit	11 bit
X-axis proximity	Y-axis proximity	Z-axis proximity	U-axis proximity
switch state (0:	switch state (0:	switch state (0:	switch state (0:
normal open 1:	normal open 1:	normal open 1:	normal open 1:
normal close)	normal close)	normal close)	normal close)

12 bit	13 bit	14 bit	15 bit
X-axis proximity	Y-axis proximity	Z-axis proximity	U-axis proximity
switch logic(0:	switch logic(0: rising	switch logic(0: rising	switch logic(0: rising
rising 1: falling)	1: falling)	1: falling)	1: falling)

PARA.27: Amplification factor

When the system operates the data, all the decimals will be ignored, the data will be stored in integer. Before the system operation, expand 2^n (n: amplification factor) times for the data which can improve the calculation precision. After the calculation, divide the data by 2^n .

The bigger the amplification factor, the higher the calculation precision. However, if the factor is too big, the register will overflow. Generally, set the factor to 6. (Notes: normally, don't set this parameter, to avoid calculation error).

PARA.28: Feed forward compensation coefficient

Range: 0%~100%. 0% means no feed forward compensation.

The following instruction outputs the pulse after receiving the pulse and internal processing, so there will be delay effect. Modify the delay effect by feed forward compensation to achieve the best synchronization.

No.	Special data	Function	Explanation	Default
	register			value
1	D8482	Current position	0-axis current coordinates position	0
	D8483	(0-axis)	o-axis current coordinates position	
2	D8484	Current position	1 axis surrent soordinates position	0
2	D8485	(1-axis)	1-axis current coordinates position	
2	D8486	Current position	2 ovic comment occardinates mosition	0
3	D8487	(2-axis)	2-axis current coordinates position	
4	D8488	38 Current position		0
4	D8489	(3-axis)	3-axis current coordinates position	
5	D8490 D8491	Current segment	The No. of current running motion control instruction. (Current segment only points to motion control instructions. General PLC instructions are not included in it.)	0
6	D8500 D8501	Current pulse number of following	The pulse number output by FOLLOW instruction	
7	D8502	Fine tuning pulse number of following	Increased or decreased pulse number in one scanning period. It resets after the scanning period.	

3-7. Special data register list

3-8. Special auxiliary relay list

NO.	Special	Function	Explanation	Default
1	M8260	Flow control bit	See note[1]	0
2	M8261	Forbid X-axis return to machine zero bit	When this bit is ON, the return to zero instruction of this axis will not work.	0
3	M8262	Forbid Y-axis return to machine zero bit	When this bit is ON, the return to zero instruction of this axis will not work.	0
4	M8263	Forbid Z-axis return to machine zero bit	When this bit is ON, the return to zero instruction of this axis will not work.	0
5	M8264	Forbid U-axis return to machine zero bit	When this bit is ON, the return to zero instruction of this axis will not work.	0
6	M8265	X-axis return to machine zero end bit	When running DRVZ, this bit will from ON to OFF, when machine reach the zero point, this bit become ON, see Note [2].	0
7	M8266	Y-axis return to machine zero end bit	When running DRVZ, this bit will from ON to OFF, when machine reach the zero point, this bit become ON.	0
8	M8267	Z-axis return to machine zero end bit	When running DRVZ, this bit will from ON to OFF, when machine reach the zero point, this bit become ON.	0
9	M8268	U-axis return to machine zero end bit	When running DRVZ, this bit will from ON to OFF, when machine reach the zero point, this bit become ON.	0

Note[1]:

When scanning the ladder chart in PLC, implement one after another. But motion control is based on process control, only when one instruction is completed, the next one will be executed. So, uses a special M register (M8260) to show the state of the last positioning instruction. When running, set ONM8260; when completed, set it OFF. The next instruction starts to run when receiving the M8260 falling edge signal. When running, set ON M8260 again; when completed, set it OFF. Repeat as this way, the program will run in order.

Note[2]:

When running DRVZ instruction, M8265 turns from ON to OFF. When machine reaches machine zero point, M8265 turns to ON again.

3-9. Pulse output sign bit

Bit register:

Address	Function	Explanation	Pulse number
M8170	Pulse output	ON when pulse output	
M8171	32-bit pulse output	It ON when overflow	PULSE_1
M8172	Direction	1 is positive direction, related direction output ON	1
M8173	Pulse output	ON when pulse output	
M8174	32-bit pulse outpu	It ON when overflow	PULSE_2
M8175	Direction	1 is positive direction, related direction output ON	1
M8176	Pulse output	ON when pulse output	
M8177	32-bit pulse outpu	It ON when overflow	PULSE_3
M8178	Direction	1 is positive direction, related direction output ON	1
M8179	Pulse output	ON when pulse output	
M8180	32-bit pulse output overflow	It ON when overflow	PULSE_4
M8181	Direction	1 is positive direction, related direction output ON	1
M8730	Pulse output	ON when pulse output	1
M8731	32-bit pulse outpu	^{1t} ON when overflow	PULSE_5
M8732	Direction	1 is positive direction, related direction output ON	1
M8733	Pulse output	ON when pulse output	
M8734	32-bit pulse output	It ON when overflow	PULSE_6
M8735	Direction	1 is positive direction, related direction output ON	1
M8736	Pulse output	ON when pulse output	1
M8737	32-bit pulse outpu overflow	It ON when overflow	PULSE_7
M8738	Direction	1 is positive direction, related direction output ON	1
M8739	Pulse output	ON when pulse output	PULSE_8

M8740	32-bit pulse output overflow	ON when overflow		
M8741	Direction	1 is positive direction, related direction output C)N	
M8742	Pulse output	ON when pulse output		
M8743	32-bit pulse output overflow	ON when overflow	PULSE_9	
M8744	Direction	1 is positive direction, related direction output C	N	
M8745	Pulse output	ON when pulse output		
M8746	32-bit pulse output overflow	ON when overflow	PULSE_10	
M8747	Direction	1 is positive direction, related direction output C	N	
M8210	pulse alarm (frequency change suddenly)	1 is alarm, 0 is correct	DILL SE 1	
M8211	Whether to ignore the alarm	1 is stop output when alarm	FULSE_I	
M8212	pulse alarm (frequency change suddenly)	1 is alarm, 0 is correct	DIUSE 2	
M8213	Whether to ignore the alarm	1 is stop output when alarm	PULSE_2	
M8214	pulse alarm (frequency change suddenly)	1 is alarm, 0 is correct		
M8215	Whether to ignore the alarm	1 is stop output when alarm	PULSE_3	
M8216	pulse alarm (frequency change suddenly)	1 is alarm, 0 is correct	DIUSE /	
M8217	Whether to ignore the alarm	1 is stop output when alarm	FULSE_4	
M8750	pulse alarm (frequency change suddenly)	1 is alarm, 0 is correct	DIUSE 5	
M8751	Whether to ignore the alarm	1 is stop output when alarm	FOLSE_5	
M8752	pulse alarm (frequency change suddenly)	1 is alarm, 0 is correct	DIUSE 6	
M8753	Whether to ignore the alarm	1 is stop output when alarm	PULSE_6	
M8754	pulse alarm (frequency change suddenly)	1 is alarm, 0 is correct	DINCE 7	
M8755	Whether to ignore the alarm	1 is stop output when alarm	PULSE_/	
M8756	pulse alarm (frequency change suddenly)	1 is alarm, 0 is correct	PULSE_8	

M8757	Whether to ignore the alarm	1 is stop output when alarm	
M8758	pulse alarm (frequency change suddenly)	1 is alarm, 0 is correct	
M8759	Whether to ignore the alarm	1 is stop output when alarm	PULSE_9
M8760	pulse alarm (frequency change suddenly)	1 is alarm, 0 is correct	DULCE 10
M8761	Whether to ignore the alarm	1 is stop output when alarm	PULSE_10

Words register:

Address	Function	Explanation	Pulse number
D8170	Low 16-bit accumulative pulse quantity	Latched	
D8171	High 16-bit accumulative pulse quantity		PULSE_1
D8172	Current segment (No. n segment)		
D8173	Low 16-bit accumulative pulse quantity	Latched	
D8174	High 16-bit accumulative pulse quantity		PULSE_2
D8175	Current segment (No. n segment)		
D8176	Low 16-bit accumulative pulse quantity	Latched	
D8177	High 16-bit accumulative pulse quantity		PULSE_3
D8178	Current segment (No. n segment)		
D8179	Low 16-bit accumulative pulse quantity	Latched	
D8180	High 16-bit accumulative pulse quantity		PULSE_4
D8181	Current segment (No. n segment)		
D8730	Low 16-bit accumulative pulse quantity	Latched	
D8731	High 16-bit accumulative pulse quantity		PULSE_5
D8732	Current segment (No. n segment)		
D8733	Low 16-bit accumulative pulse quantity	Latched	
D8734	High 16-bit accumulative pulse quantity		PULSE_6
D8735	Current segment (No. n segment)		
D8736	Low 16-bit accumulative pulse quantity	Latched	
D8737	High 16-bit accumulative pulse quantity		PULSE_7
D8738	Current segment (No. n segment)		
D8739	Low 16-bit accumulative pulse quantity	Latched	
D8740	High 16-bit accumulative pulse quantity		PULSE_8
D8741	Current segment (No. n segment)		
D8742	Low 16-bit accumulative pulse quantity	Latched	
D8743	High 16-bit accumulative pulse quantity		PULSE_9
D8744	Current segment (No. n segment)		
D8745	Low 16-bit accumulative pulse quantity	Latched	PULSE 10

D8746	High 16-bit accumulative pulse quantity		
D8747	Current segment (No. n segment)		
		1	
D8210	Error segment no.		PULSE_1
D8212	Error segment no.		PULSE_2
D8214	Error segment no.		PULSE_3
D8220	Accuracy of frequency measurement	The bit behind	
		decimal point	
		1 means $\times 10$,	
		2 means $\times 100$	
D8216	Error segment no.		PULSE_4
D8750	Error segment no.		PULSE_5
D8752	Error segment no.		PULSE_6
D8754	Error segment no.		PULSE_7
D8756	Error segment no.		PULSE_8
D8758	Error segment no.		PULSE_9
D8760	Error segment no.		PULSE_10
D8190	Low 16-bit of current pulse quantity		DINSE 1
D8191	High 16-bit of current pulse quantity		FOLSE_I
D8192	Low 16-bit of current pulse quantity		DINSE 2
D8193	High 16-bit of current pulse quantity		FULSE_2
D8194	Low 16-bit of current pulse quantity		DIUSE 2
D8195	High 16-bit of current pulse quantity		TULSE_3
D8196	Low 16-bit of current pulse quantity		
D8197	High 16-bit of current pulse quantity		rulse_4
D8770	Low 16-bit of current pulse quantity		
D8771	High 16-bit of current pulse quantity		rulse_s
D8772	Low 16-bit of current pulse quantity		
D8773	High 16-bit of current pulse quantity		FULSE_0

D8774	Low 16-bit of current pulse quantity	DIUSE 7		
D8775	High 16-bit of current pulse quantity	TOLSE_/		
D8776				
D8777	FULSE_0			
D8778	Low 16-bit of current pulse quantity			
D8779	High 16-bit of current pulse quantity	FULSE_9		
D8780	Low 16-bit of current pulse quantity	DIUSE 10		
D8781	High 16-bit of current pulse quantity	POLSE_10		
D8230	Rising time of absolute/relative positioning instruction (Y0)			
D8231	Falling time of origin returning instruction (Y0)	PULSE_I		
D8232	8232 Rising time of absolute/relative positioning instruction (Y1)			
D8233	Falling time of origin returning instruction (Y1)	PULSE_2		
D8234	DULSE 2			
D8235	5 Falling time of origin returning instruction (Y2)			
D8236	Rising time of absolute/relative positioning instruction (Y3)	DILLSE 4		
D8237	7 Falling time of origin returning instruction (Y3)			
D8790	D8790 Rising time of absolute/relative positioning instruction (Y4)			
D8791	Falling time of origin returning instruction (Y4)	PULSE_3		
D8792	Rising time of absolute/relative positioning instruction (Y5)			
D8793	Falling time of origin returning instruction (Y5)	PULSE_0		
D8794	Rising time of absolute/relative positioning instruction (Y6)			
D8795	Falling time of origin returning instruction (Y6)	PULSE_/		
D8796	Rising time of absolute/relative positioning instruction (Y7)			
D8797	/ Falling time of origin returning instruction (Y7)			
D8798				
D8799	Falling time of origin returning instruction (Y10)	PULSE_9		
D8800	Rising time of absolute/relative positioning instruction (Y11)			
D8801	801 Falling time of origin returning instruction (Y11)			

3-10 Examples instructions

Example 1:

Walk a isosceles triangle which side length is 5000, bottom side lenfth is 6000; starting point is A (0, 0), A (0,0) to B (3000, 4000), then B (3000, 4000) to C (6000, 0), last from C (6000, 0) back to A (0, 0), show as below:

Program 1:

Select X-Y plane

Select absolute drive method

A move to B

B move to C

C back to A

Cause M8260is sequence control marked bit , can use its falling edge to judge interpolation accept or not , when end reset M0

Program 2 :

Cause M8260is sequence control marked bit , can use its falling edge to judge interpolation accept or not , when end reset M0 $\,$

Description:

(1) D8482 (double words) and D8484 (double words) can monitor 2 axises current postition pulse value;

(2)2 axises pulse output terminals correspond Y0, Y1, direction output terminal correspond Y4, Y5;

(3) cause linear thterpolation instructions do not add servo end check CHK instruction between two, so every angle is smooth transition (can refer to CHK instruction introduction)

Example 2:

First clockwise walk a circle of R=5000, then walk the inscribed regular triangle of circle ; start point is A (0, 0), first walk a whole circle from A (0,0) \rightarrow B (7500, 4285) \rightarrow C (7500, -4285) \rightarrow A (0,0), next from A (0, 0) to B (7500, 4285), then B (7500, 4285) to C (7500, -4285), last from C (7500, -4285) back to start point A(0,0) finish a inscribed regular triangle ,show as below :

Program1:

Select X-Y plane Select absolute drive method Excute CW instruction A move to B Servo check end B move to C Servo check end Cback to A

Cause M8260is sequence control marked bit, can use its falling edge to judge interpolation accept or not , when end reset M0

Program 2 :

Description:

(1) D8482 (double words) and D8484 (double words) can monitor 2 axises current postition pulse value;

(2)2 axises pulse output terminals correspond Y0, Y1, direction output terminal correspond Y4, Y5;

Example 3:

Show as below, start from origin point A, come by $B \rightarrow C \rightarrow D \rightarrow E \rightarrow F \rightarrow G \rightarrow H \rightarrow I \rightarrow J \rightarrow M \rightarrow K$ $\rightarrow L \rightarrow P \rightarrow Q \rightarrow W \rightarrow Z \rightarrow A$, Y axisymmetric , AB=5000, BC=3000, CD=6000, DE=4000, R2=3000, GH=6000, R1=7070.

Program 1:

M0				_	
	PLAN	K0	K1		
	INC				
]			
	LIN	K0	K5000	K0	K2000
	СНК				
	LIN	K3000	K0	K0	K2000
	СНК				
	CIIK				
	LIN	K0	K6000	K0	K2000
	CHK				
	LIN	K4000	K0	K0	K2000
	CHK				
	LIN	K6000	K-6000	K0	K2000
	CHIV				
	СНК				
	CONT	0 17 600			
	CCW K	.0 K600	0 K0 K30	000 K	0 K2000
	СНК				

Select X/Y plane Select tncremental drve method A move to B Servo check end B move to C Servo check end C move to D Servo check end D move to E Servo check end E move to F Servo check end Servo check end Servo check end

G move to H Servo check end H move to I Servo check end I move to J Servo check end J move to M Servo check end M move to K Servo check end K move to L Servo check end Lmove to P Servo check end Pmove to Q Servo check end Q move to W Servo check end Wmove to Z Servo check end Zmove to A

Cause M8260is sequence control marked bit, can use its falling edge to judge interpolation accept or not , when end reset M0

Description :

(1) D8482 (double words) and D8484 (double words) can monitor 2 axises current postition pulse value ;

(2)2 axises pulse output terminals correspond Y0, Y1, direction output terminal correspond Y4, Y5;

Program 2:

M8002

78

3-11. Application

1. Model system

XCM controls the worktable position via controlling the servo motor.

2. **Parameter settings**

(1) Servo driver parameter settings:

The rated speed of servo motor is 3000[r/min], the feedback pulse of encoder is 8192 [pls/rev]. As the characteristic of servo motor, at certain rotation speed, command pulse frequency f₀ is equal to the feedback pulse frequency P_B, and then you will obtain the following equation:

$f_{0:}$	Command pulse frequency (Hz) (Output from the XCM)
P _{f:}	Feedback pulse (locating feedback pulse) quantity [pls/rev]
P _{B:}	The screw pitch of ball screw
N_0 :	The rotation speed of servo motor[r/min]
CMX:	The numerator of servo driver command pulse amplification (electronic gear)
CDV:	The denominator of servo driver command pulse amplification (electronic gear)

When the servo motor reaches the rated rotation speed, XCM needs to output the maximum command pulse frequency, here we select 200 KHz. The result is as below:

$$\frac{CMX}{CDV} = P_f \times \frac{N0}{60} \times \frac{1}{f_0} = \frac{256}{125}$$

So, set "CMX=256, CDV=125" in servo amplifier.

(2) Pulse rate and feed rate

Deduce pulse rate and feed rate according to the following steps.

(a) Pulse rate means the pulse quantity of servo motor rotating a circle, it can calculate pulse rate as the following formula:

$$A = P_f \times \frac{1}{\frac{CMX}{CDV}}$$

Substitute the previous value (CMX:256 CDV:125) into the formula, then you will get the pulse rate.

Pulse rate:
$$A = 8192[pls / rev] \times \frac{1}{\frac{256}{125}} = 4000[pls / rev]$$

(b) Feed rate means the motion quantity of the work piece when servo motor rotates one circle.

When ball screw finishes one screw pitch P_B , motor rotates N2 circles, and the transmission ratio between motor and ball screw is N1.

Feed rate

 $B = N1 \times P_{\rm B} \times \frac{1}{N2}$

N1: machine transmission ratio

N2: rotate circle quantity

 $P_{B:}$ screw pitch of the ball screw

Below is calculating process:

Feed rate
$$B = \frac{1}{1} \times 5[mm] \times \frac{1}{1[rev]} = 5[mm/rev]$$

(3) Convert motion quantity to pulse quantity

Machine quantity

Pulse quantity = -

— × pulse quantity of every motor rotation

Motor feed rate per rotation

We need the work piece to move 200mm, then convert it to pulse quantity:

Pulse quantity (pls) =
$$\frac{200[\text{mm}]}{5[\text{mm}/\text{rev}]} \times 4000[\text{pls/rev}] = 160000[\text{pls}]$$

So if the work piece moves 200mm, XCM need to output 160000 pulses. If the work piece moves at the speed of 30cm/min, then convert it to pulse frequency: Pulse quantity:

So if the work piece moves at 30cm/min, XCM should output pulse frequency of 4000Hz.

$$(\text{Hz}) = \frac{30[\text{cm / min }] \times 10 \times 1/60}{5[\text{mm / rev}]} \times 4000[\text{pls / rev}] = \frac{300 \times 1/60}{5} \times 4000 = 4000 \text{Hz}$$

3. Program explanation

▲ Axis position control operation

Positioning summarize: positioning device only moves as the current motion quantity.

- Operating steps
- i : When positioning device receives starting command, it will move as current quantity.
- ii: When the moving ends, sets ON Y10.
- Motion diagram

Speed X axis start input turn-on Output Y10 Move distance

• Procedure

▲ Position with reciprocating motion constant

• Positioning summarize

XCM controls work piece moving from left to right, and controls work piece up-down moving via electromagnet.

• Operate steps

(1) Only the first time work piece returns to zero via starting command.

(2) The electromagnet Y0 turns on which moves down the work piece. When lower limit switch

X0 turns on, clamping electromagnet Y1 turns on to clamp work piece.

(3) After 1.5s, move-down electromagnet Y0 turns off, work piece moves up.

(4) When upper limit switch X1 turns on, work piece moves right.

(5) When positioning device arrives at right side of the worktable (2000, 0), move-down

electromagnet Y0 turns on, work piece starts to move down. When lower limit switch X0 turns on,

clamping electromagnet Y1 turns off, the clamp loose to put down the work piece.

(6) After 1.5s, move-down electromagnet Y0 turns off, positioning device moves up.

(7) When upper limit switch X1 turns on, work piece goes back to the left side of worktable.

• Running diagram

87

Instruc	tion:		
LDP	M0		
OUT	C0	K1	count the starting times
LDP	C0		when starting at the first time, set on process S0
SET	S 0		
STL	S 0		
LD	S 0		
OUT	T201	K.	5
LD	T201		
RST	M10		
RST	M11		
ABS			
DRVZ			go back to electrical zero
DRV	K0	K0	fast position to (0, 0)
SETR			set the current position to electrical zero
LDP	X1		
RST	S0		
STLE			
LDP	M0		not start M0 at the first time
RST	M11		reset M11 and M10
RST	M10		
LDP	M0		
OR	Y11		when M0 turns on, move-down electromagnet Y11 turns on
ANI	Т0		
LDF	M826	50	
AND	Y12		when move right is finished, move-down electromagnet Y11 turns on
ORB			
ANI	M11		
OUT	Y11		
LDP	X0		when lower limit switch X0 turns on, clamping electromagnet Y12 turns on
MCS			
LDI	M10		
SET	Y12		
LD	M10		
RST	Y12		
LD	M8000)	
SET	M12		M12 is seemed as X0 lower limit switch sign
MCR			
LD	M12		
OUT	T0	K15	delay for 1.5 seconds and clamping electromagnet turns on
LD	Т0		
RST	M12		after 1.5 seconds, loose the move-down electromagnet
LDF	Y12		
SET	M13		

LD	M13		
OUT 1	F1 K15		delay for 1.5 seconds, after 1.5 seconds, turn off the move-down
			electromagnet, it moves up
LDP	T1		
SET	M11		
RST	M13		
LDI	M10		
MCS			
CHK	X1		
INC			
DRV	K2000	K0	when X1 turns on, fast position to (2000, 0)
LDF	M8260		
SET	M10		
MCR			
LDP	X1		
ANI	Y11		when X1 turns on again, start process S1 and fast return
ANI	Y12		
SET	S1		
STL	S1		
LD	S1		
OUT	T200	K5	
LD	T200		
ABS			
DRV	K0 K0		
LDP	M0		
RST	S 1		
STLE			

4. Appendix

The chapter introduces the basic and applied instructions of PLC, motion control instructions and parameters of motion controller.

4-1. Basic order control instruction list

4-2. Application instruction list

4-3. Special function instruction list

4-4. High speed counter assignment

4-5. External input interruption assignment

4-6. Frequency measurement

4-1. Basic order control instruction list

Instruction	Function	Usable soft element
LD	Initial logical operation NO (normally	X, Y , M , S , T , C , $Dn.m$, $FDn.m$
	open) contactor	
LDD	Directly read state from contactor	Х
LDI	Initial logical operation NC (normally	X, Y , M , S , T , C , $Dn.m$, $FDn.m$
	closed) contactor	
LDDI	Directly read NC(normally closed)	X
LDP	Initial logical operation-Rising edge pulse	X, Y , M , S , T , C , $Dn.m$, $FDn.m$
LDF	Initial logical operation-Falling /trailing	X, Y, M, S, T, C, Dn.m, FDn.m
	edge pulse	
AND	Serial connection of NO (normally open)	X, Y , M , S , T , C , $Dn.m$, $FDn.m$
	contactors	
ANDD	Directly read state from contactor	X
ANI	Serial connection of NC (normally closed)	X, Y , M , S , T , C , $Dn.m$, $FDn.m$
	contactors	
ANDDI	Directly read NC(normally closed)	Х
	contactor	
ANDP	Serial connection of rising edge pulse	X, Y, M, S, T, C, Dn.m, FDn.m
ANDF	Serial connection of falling/trailing edge	X, Y, M, S, T, C, Dn.m, FDn.m
	pulse	
OR	Parallel connection of NC (normally	X, Y, M, S, T, C, Dn.m, FDn.m
	closed) contactors	
ORD	Directly read state from contact	X
ORI	Parallel connection of NC (normally	X, Y, M, S, T, C, Dn.m, FDn.m
	closed) contactors	
ORDI	Directly read NC(normally closed)	X
		V V M G T C D FD
	Parallel connection of rising edge pulse	X, Y, M, S, T, C, Dr, m, FDr, m
OKF	Parallel connection of failing/trailing edge	X, Y, M, S, T, C, Dn.m, FDn.m
	pulse Serial connection of multiply parallel	None
AND	circuits	None
ORB	Parallel connection of multiply parallel	None
01LD	circuits	
OUT	Final logic operation coil drive	Y_{λ} M _{λ} S _{λ} T _{λ} C _{λ} Dn.m
OUTD	Directly output to loop	Y
SET	Set a bit device permanently ON	Y、M、S、T、C、Dn.m
RST	Reset a bit device permanently OFF	Y、M、S、T、C、Dn.m

PLS	Rising edge pulse	X, Y , M , S , T , C , $Dn.m$
PLF	Falling/trailing edge pulse	X, Y, M, S, T, C, Dn.m
MCS	Connect the public serial contactors	None
MCR	Clear the public serial contactors	None
ALT	The status of the assigned device is	X, Y, M, S, T, C, Dn.m
	inverted on every operation of the	
	instruction	
NOP	No operation or null step	None
END	Force the current program scan to end	None
GROUP	Start the fold of instruction group	None
GROUPE	End the fold of instruction group	None

Note: refer to XC series instruction manual.

4-2. Application instruction list

Sort	Mnemonic	Function							
	CJ	Condition jump							
	CALL	Call subroutine							
	SRET	Subroutine return							
	STL	Flow start							
	STLE	Flow end							
Program	SET	Open the assigned flow, close the current flow							
Flow	ST	Open the assigned flow, not close the current flow							
	FOR	Start of a FOR-NEXT loop							
	NEXT	End of a FOR-NEXT loop							
	FEND	First end							
	LD=	LD activates if $(S1) = (S2)$							
	LD>	LD activates if $(S1) > (S2)$							
	LD<	LD activates if (S1) =< (S2)							
	LD<>	LD activates if $(S1) \neq (S2)$							
	$D \le $	LD activates if $(S1) \leq (S2)$							
	D>=	LD activates if $(S1) \ge (S2)$							
	AND=	AND activates if $(S1) = (S2)$							
	AND>	AND activates if $(S1) > (S2)$							
Data	AND<	AND activates if $(S1) < (S2)$							
Compare	AND<>	AND activates if $(S1) \neq (S2)$							
	$AND \le$	AND activates if $(S1) \leq (S2)$							
	AND>=	AND activates if $(S1) \ge (S2)$							
	OR=	OR activates if $(S1) = (S2)$							
	OR>	OR activates if $(S1) > (S2)$							
	OR<	OR activates if $(S1) < (S2)$							
	OR<>	OR activates if $(S1) \neq (S2)$							
	OR < =	OR activates if $(S1) \leq (S2)$							
	OR > =	OR activates if $(S1) \ge (S2)$							
	СМР	Data compare							
	ZCP	Data zone compare							
	MOV	Move							
Data	BMOV	Block move							
Maya	FMOV	Fill move							
Move	FWRT	Flash ROM write							
	MSET	Zone set							
	ZRST	Zone reset							
	SWAP	Exchange the high byte and low byte							

Application instruction kinds and corresponding kinds of each series showed as below:

	ХСН	Exchange						
	ADD	Addition						
	SUB	Subtraction						
	MUL	Multiplication						
	DIV	Division						
	INC	Increment						
Data	DEC	Decrement						
Data	MEAN	Mean						
Operation	WAND	Word And						
	WOR	Word OR						
	WXOR	Word exclusive OR						
	CML	Compliment						
	NEG	Negative						

	SHL	Arithmetic Shift Left							
	SHR	Arithmetic Shift Right							
	LSL	Logic shift left							
	LSR	Logic shift right							
Data Shift	ROL	Rotation shift left							
Data Sillit	ROR	Rotation shift right							
	SFTL	Bit shift left							
	SFTR	Bit shift right							
	WSFL	Word shift left							
	WSFR	Word shift right							
	WTD	Single word integer converts to double word integer							
	FLT	32 bits integer converts to float point							
	FLTD	64 bits integer converts to float point							
	INT	Float point converts to binary							
	BIN	BCD converts to binary							
	BCD	Binary converts to BCD							
	ASC	Hex. converts to ASCII							
Data	HEX	ASCII converts to Hex							
Convert	DECO	Coding							
Float	ENCO	High bit coding							
Point	ENCOL	Low bit coding							
Operation	ECMP	Float compare							
	EZCP	Float Zone compare							
	EADD	Float Add							
	ESUB	Float Subtract							
	EMUL	Float Multiplication							
	EDIV	Float division							
	ESQR	Float Square Root							
	SIN	Sine							

	COS	Cosine
	TAN	Tangent
	ASIN	Anti-sine
	ACOS	Anti-cosine
	ATAN	Anti-tangent
Clock	TRD	Read RTC data
Operation	TWR	Set RTC data

Note: refer to XC series instruction manual.

4-3. Special function instruction list

Instruction sign	Instruction name
PLSY	Single segment pulse output without accelerate/decelerate
PLSR	Single/multiple segment, with accelerate/decelerate, single/double direction
	pulse output
PLSF	Variable frequency pulse output
PLSNEXT/PLSNT	Pulse segment switch
PLSMV	Save pulse number into register
STOP	Pulse stop
COLR	Modbus loop read
INPR	Modbus input loop read
COLW	Modbus single loop write
MCLW	Modbus multiple loops write
REGR	Modbus register read
INRR	Modbus input register write
REGW	Modbus single register write
MRGW	Modbus multiple registers write
SEND	Free format data send
RCV	Free format data incept
CCOLR	CAN-bus loop read
CCOLW	CAN-bus loop write
CREGR	CAN-bus register read
CREGW	CAN-bus register write
PWM	Pulse width modulate
FRQM	Frequency measurement
STR	Precise timing
EI	Allow interruption
DI	Forbid interruption
IRET	Interruption return
PID	PID operation control
ZRN	Zero point returning
DRVA	Absolute positioning
DRVI	Relative positioning

Generic special instruction list

Note: refer to XC series instruction manual.

4-4. High speed counter assignment

XCM high speed count input distribution as follows:

XCM-32T-E

				Inc	remei	ntal m	ode	Pu	lse + d	lirecti	AB phase mode							
	C600	C602	C604	C606	C608	C610	C612	C614	C616	C618	C620	C622	C624	C626	C628	C630	C632	C634
Max frequency	80K	10K									80K					80K		
4-time																\checkmark		
Interruption	~	\checkmark									~					\checkmark		
X000	U										U					А		
X001											Dir					В		
X002																		
X003		U																

XCM-32T-E-3PLS

				Inc	remer	ntal m	ode	Pul	lse + o	lirecti	AB phase mode							
	C600	C602	C604	C606	C608	C610	C612	C614	C616	C618	C620	C622	C624	C626	C628	C630	C632	C634
Max frequency	80K	10K	10K	10K							80K	10K				80K	10K	
4-time																./		
frequency																v		
Interruption	\checkmark	\checkmark									\checkmark					\checkmark		
X000	U										U					А		
X001											Dir					В		
X002																		
X003		U										U					А	
X004												Dir					В	
X005																		
X006			U															
X007				U														

Notes: X7 cannot work with Y0 at the same time.

ХСМ-60Т-Е

	Incremental mode							Pulse + direction mode				AB phase mode						
	C600	C602	C604	C606	C608	C610	C612	C614	C616	C618	C620	C622	C624	C626	C628	C630	C632	C634
Max frequency	80K	10K	10K	10K												80K	10K	10K
4-time																,	,	/
frequency																Ň	Ň	v
Interruption	\checkmark	\checkmark														\checkmark		
X000	U															Α		
X001		U														В		
X002																		
X003																		
X004																		
X005																		
X006			U														A	
X007																	В	
X010				U														А
X011																		В

4-5. External input interruption assignment

XCM external interruption definition:

ХСМ-32Т-Е:

	Poi	Disable			
Input	Rising	Falling	interruption		
	interruption	interruption			
X2	10000	I0001	M8050		
X5	I0100	I0101	M8051		
X10	I0200	I0201	M8052		
X11	I0300	I0301	M8053		
X12	I0400	I0401	M8054		
X13	10500	I0501	M8055		

XCM-32T-E-3PLS:

	Poi	Disabla			
Input	Rising	Falling	interruption		
	interruption	interruption	menuption		
X2	10000	I0001	M8050		
X5	I0100	I0101	M8051		
X10	I0200	I0201	M8052		

ХСМ-60Т-Е:

	Poi	Disabla		
Input	Rising	Falling	interruption	
	interruption	interruption		
X2	10000	I0001	M8050	
X3	I0100	I0101	M8051	
X4	I0200	I0201	M8052	
X5	10300	I0301	M8053	

4-6. Frequency measurement

XCM frequency measurement input:

Туре	Input			
ХСМ-32Т-Е	X3			
XCM-32T-E-3PLS	X6, X7			
ХСМ-60Т-Е	X1			

Notes: X7 and Y0 of XCM-32T-E-3PLS cannot work at the same time.

WUXI XINJE ELECTRIC CO., LTD.

 4th Floor, Building
 7th, No.100 Dicui

 Rd, Wuxi, China
 7tl

 Tel:
 86-0510-85134139

 Fax:
 86-0510-85111290

 www.xinje.com
 7tl

Email: cheerfiona@gmail.com